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SUMMARY 

Variants of the bi-conjugate gradient (Bi-CG) method are used to resolve the problem of slow convergence in CFD 
when it is applied to complex flow field simulation using higher-order turbulence models. In this study the Navier- 
Stokes and Reynolds stress transport equations are discretized with an implicit, total variation diminishing (TVD), 
finite volume formulation. The preconditioning technique of incomplete lower-upper (ILU) factorization is 
incorporated into the conjugate gradient square (CGS), bi-conjugate gradient stable (Bi-CGSTAB) and transpose- 
free quasi-minimal residual (TFQMR) algorithms to accelerate convergence of the overall itertive methods. 
Computations have been carried out for separated flow fields over transonic bumps, supersonic bases and 
supersonic compression comers. By comparisons of the convergence rate with each other and with the 
conventional approximate factorization (AF) method it is shown that the Bi-CGSTAB method gives the most 
efficient convergence rate among these methods and can speed up the CPU time by a factor of 2 4 6 . 5  as 
compared with the AF method. Moreover, the AF method may yield somewhat different results from variants of 
the Bi-CG method owing to the factorization error which introduces a higher level of convergence criterion. 

KEYWORDS Bi-conjugate gradient method Second moment turbulent closure compressible Separated flow Convergence 
behaviour 

1. INTRODUCTION 

With increasing computer power and continuing algorithm development, computational fluid dynamics 
(CFD) has recently made remarkable progress for high-speed flows. The solution of the compressible 
Navier-Stokes equations with higher-order turbulence closure models is of fundamental importance 
for a wide variety of flows. In particular, turbulent separated flows are currently of great interest 
because the capability of accurately predicting flow separation plays an important role in evaluating the 
performance of aerodynamic design. Over the years the approximate factorization (AF)' technique has 
been widely used to solve the implicitly discretized Navier-Stokes equations and turbulent transport 
equations. However, good convergence behaviour for the system of these equations is difficult to 
achieve when higher-order turbulence model closures such as the two-equation model, algebraic 
Reynolds stress model and differential Reynolds stress model are employed, because stiffness may 
arise especially near the wall owing to the use of a very fine mesh. The slow convergence problem in 
the AF method may be caused by the existence of a factorization error which is introduced during 
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factorizing of the two-dimensional operator into two one-dimensional operators. Moreover, most 
investigators must give special attention to finding good initial guesses of mean flow fields and 
turbulent properties to reach acceptable convergence. Therefore an efficient and robust numerical 
solver for complex flow simulation using higher-order turbulence models is necessary to get a fast 
convergence rate and reliable results even when no special effort for initial conditions is required. 

Recently the generalized conjugate gradient methods have been demonstrated to greatly improve the 
robustness and convergence in current CFD  application^.'^^ Among these generalized conjugate 
gradient methods, the CGS4 (conjugate gradient square) method, which removes the matrix transpose 
computation, has been recognized as an attractive iterative method because it is competitive with 
GMRES' (generalized minimal residual) in convergence rate and is economical in both storage 
requirements and computing time. However, in some applications the CGS method could face an 
irregular convergence behaviour close to the final solution and spoil the numerical result. Therfore 
more smoothly converging variants of BI-CGSTAB6 (bi-conjugate gradient stable) and TFQMR' 
(transpose-free quasi-minimal residual) algorithms have been developed and employed in the 
computations. Moreover, it is also found that the preconditioning technique is critical to the success of 
generalized CG methods, and preconditioned conjugate gradient and its generalizations have been 
successfully applied in the CFD codes of Venkatakrishnan' for subsonic and transonic flows and 
Ajmani et aL9 for transonic and hypersonic flows. However, only the Baldwin-Lomax algebraic 
turbulence model is incorporated in their studies. 

More recently Lin et al. l o  have achieved a good convergence rate by the use of these variants of the 
Bi-CG method with an ILU preconditioner" for turbulent, transonic, separated flow using the k-& two- 
equation model with uniform distributions of the mean flow variables and turbulent properties as the 
initial guesses. However, the k-c model is limited to applications of complex flow field prediction such 
as shock-induced separation and supersonic base flow. The present study extends the work of Lin et al. 
by the use of second-moment turbulent closure for transonic and supersonic separated flow fields. In 
this paper, transonic flow over a supersonic flow over a compression comer14315 and 
supersonic flow behind a missile-type a f t e rb~dy '~ , '~  are the test cases computed with the implicit TVD 
scheme and Shima's near-wall Reynolds stress model (RSM)" to demonstrate the superiority of CGS, 
Bi-CGSTAB and TFQMR algorithms over the AF method in both computational efficiency and 
accuracy. Moreover, a comparison between the computed surface pressure distributions and the 
experimental data will be presented to show the improvement of the RSM model over the two-equation 
model for separated flow field simulations. 

2. PHYSICAL AND MATHEMATICAL MODELS 

The governing equations used to describe the mean flow in this study are the time-dependent, mass 
averaged Navier-Stokes equations for a compressible fluid. Depending on the turbulence models used, 
the equations are augmentd by additional equations. In the present application, turbulence closure is 
described by Shima's near-wall Reynolds stress model," so that it involves four transport equations for 
the independent stresses and a fifth transport equation for the turbulent energy dissipation rate E .  

The Navier-Stokes equation and turbulent transport equations for two-dimensional or axisymmetric 
flow can be written in vector form in an arbitrary co-ordinate system (5 ,  q )  as 

8,(Q) +a,(& - Ev) + aq(k - kv) +j(k - kv) = IP. (1 )  
The equation describes two-dimensional flow if j = 0 and axisymmetric flow i f j  = 1. Q is the vector 

of dependent variables, Q = QIJ = f { p ,  pu, pv, E,, pu'u', pv'v', pw'w', pu'v', pe}, in the application 
of second-moment turbulent closure. The vectors E and F represent the corresponding convective 

_ _ - _  
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fluxes and contain convection and pressure terms, while the vectors Ev and Fv describe diffusive 
fluxes in the 5- and q-directions respectively. The vectors H and Hv are the source terms 
of convection, diffusion and turbulent energy associated with axisymmetric co-ordinates, while 
W contains the source terms for production, destruction and redistribution of turbulent energy. 
J is the Jacobian and the perfect gas equation of state is added to complete the system 
of equations. 

The Reynolds stress components q are computed from the transport equations of Reynolds 
stresses (q) and the dissipation rate of turbulent kinetic energy ( E ) .  These equations can be expressed 
as 

so that the source terms of i@ in the turbulent transport equations of the Reynolds stress model can be 
expressed as 

The detailed expressions of the Reynolds stress generation rate PU, viscous dissipation rate E ,  
and pressure/strain-related redistribution 4q as well as q5,,w in Shima’s Reynolds stress model 
are available in Reference 18. The inclusion of the high anisotropic effect of the turbulent stresses 
in the immediate vicinity of the wall and the easy assessment of the empirical constants for 
the pressure/strain term are the reasons for choosing Shima’s Reynolds stress model for 
this study. 

3. NUMERICAL METHODS 

Using the finite volume formulation, the governing equation ( 1 )  can be implicitly discretized as 

At 
- - [ (F  - F v ) i j + l p  - (F - Fv)i. i- l /2]n+1 + A t V j  -jAt(Ej - Ejv):J. (4) 

Av 

In the present study Yee and Harten’s TVD scheme’’ is applied for the convective flux terms 
(E ,F) ,  while the viscous flux terms (gV,Fv) are evaluated with the central difference 
approximation. 

The RHS of equation (4) is linearized in time about the nth time level in the computations. This 
transforms equation (4) into a system of linear, simultaneous algebraic equations which can be solved 
in several ways. In this paper the AF method and variants of the Bi-CG method such as CGS, Bi- 
CGSTAB and TFQMR are selected to make a comparison of computational efficiency. Brief 
descriptions of the methods are given below. 
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3. I .  AF method 

The implicit, approximately factored method for the full Navier-Stokes equations and Reynolds 
stress transport equations using upwind differencing in the r- and ?-directions can be written in the 
form 

[Z + At(8;A' +a;k)]"[Z + At(8;8' +a,'E-) - A C ~ , ] " ( A @ : ~  = RHS of (4) at the nth time level, 

( 5 )  

where A+, A- and B-+, B- are the positive and negative split Jacobian matrices in the 5- and q- 
directions respectively. The additional matrix D is used for higher-order turbulence models to 
overcome the stiffness problem caused by the use of a very fine mesh near the wall, where the source 
term I@ could be very large. The value of D is set to be the maximum value of the partial derivatives of 
the source terms and WPE with respect to the conservation of variables p3 and PE 
respectively. In the preseht study the mean flow equations and Reynolds stress transport equations are 
decoupled in the computation so that the work of solving a 9 x 9 block tridiagonal matrix equation 
can now be reduced to solve a 4 x 4 block tridiagonal matrix equation and five tridiagonal matrix 
equations. Because a factorization error is introduced in this scheme during factorizing of the two- 
dimensional operator to two one-dimensional operators, the allowable time step is limited and a 
relaxation factor of 0 - 1 0 . 2 5  must be added in the computation of the Reynolds stress transport 
equations for the sake of stability. 

3.2. Preconditioned iterative method 

The factored matrix equation (5) can be replaced by the non-factored form 

j . . ( A Q ) .  ' J  1 - 1 J  . + C;j(AQ);+lj + E;j(AQ)ij-l + i i j (AQ); j+ i  + f i ; j (AQ); j  = Bij1 (6) 

where 

Equation (6) forms a diagonally dominant, block pentadiagonal matrix system equation Ax = b. The 
coefficient matrices J ; j ,  C;j, D j j ,  Eij  and 3;j are 9 x 9 square matrices and the right-hand-side matrix 
Bij  is a 9 x 1 vector. The unknown (AQ)ij is conventionally evaluated by the block Gauss-Seidel 
method2032' but the convergence rate is very slow. In recent years generalized conjugate gradient 
methods such as Bi-CG have become powerful iterative schems for solving the linear system Ax = b 
with general non-symmetric, non-singular coefficient matrices. For the Bi-CG methodz2 the 
approximations are constructed in such a way that the residual 5 is orthogonal to another vector 
row ?o, ?I , . . . , Pj-l and vice versa. This can be accomplished by two three-term recurrence relations for 
rows { r,} and { F,}, and the residual vectors of the Bi-CG algorithm can be written as r,, = P,,(A)ro and 
?,, = P,,(AT)?0 respectively, where P,, is a polynomial of degree less than or equal to n. However, the Bi- 
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CG method is very cumbersome to programme, because the computational work of the Bi-CG 
algorithm is twice that of the CG algorithm and it requires the computation of AT. 

Sonneveld4 observed that only the convergence of {r,,} is exploited in the case of convergence. He 
suggested the CGS method where the polynomial pn(A) is applied twice, i.e. F,, = p&f)ro, as the 
residuals to estimate x,, of the solution. Then the process to generate the sequence of r,, is no longer 
needed and multiplications by the matrix AT are avoided. In many situations, however, one is faced with 
a somewhat irregular convergence behaviour of CGS, in particular when starting the iteration close to 
the solution. To smooth the convergence history without losing the attractive convergence speed of 
CGS, Van der Vorst6 proposed an apparently rather stable and more efficient scheme called Bi- 
CGSTAB in which the residual r,, = Q,,(A)p,,(A)rO is developed. The polynomial Q,,(A) is of the form 
Q,,(A) = (1 - wlA)(l - WZA)  . . . (1 - w d ) ,  where w1, w2, . . . , w, are selected by minimizing r,, 
with respect to 0,. 

However, CGS and Bi-CGSTAB methods are all derived from Bi-CG method and the residual norm 
is not characterized by a minimization property, which means that the algorithms could exhibit a rather 
irregular convergence behaviour with wild oscillations in the residual norm. Based on the look-ahead 
Lanczos approach, Freund and Nathtiga123 proposed a variant Bi-CG method, the quasi-minimal 
residual (QMR) method, which remedies the convergence problems of Bi-CG, but both Bi-CG and 
QMR require matrix multiplications by AT. More recently Freund ' proposed the TFQMR method 
which is defined by a quasi-minimization of the residual norm, but similarly to the CGS algorithms, it 
does not require multiplications by AT. He showed that the resulting TFQMR method can be easily 
implemented and can remedy the irregular convergence behaviour with wild oscillations in the residual 
norm of Bi-CG-like methods. 

Meanwhile, the convergence rate of conjugate gradient methods depends strongly on the eigenvalue 
distribution of the coefficient matrix. Instead of solving the original linear system Ax = b, in 
application a preconditioned technique is used to solve the related linear system K-'Ax = K-'b .  The 
matrix product K -  ' A  has a more favourable eigenspectrum distribution than A has, i.e. the eigenvalues 
are more clustered near unity. The choice of preconditioner in the present study is based on an 
incomplete line LU factorization of the matrix A (denoted as ILU), which consists of a strictly block 
lower triangular matrix of A (denoted as L),  a strictly block upper triangular matrix of A (denoted as L') 
and a non-zero block diagonal matrix D, satisfying A = ( L  + D)D-'(U + D)  + E, where E is the 
deviation matrix. The preconditioning with ILU is done by choosing K = ( L  + Di)D;'(U + Di), where 
Di is slightly modified from D, and the solution procedure is available in Reference 1 1. The algorithms 
for solving K-'Ax = K - ' b  by the preconditioning CGS, Bi-CGSTAB and TFQMR methods are 
described briefly below. 

Preconditioning CGS method 

Give an initial guess xo, ro = b - Axo; 
Choose a vector io such that (ro, Po) # 0, e.g. io = ro; 

do k = 0, 1, . . . until residual < tolerance 
Solve y from Ky = P k ;  

v = Ay 

let Po = (Po, ro), Po = 40 = ro; 

ak = PdtO, v); 
s = qk - UkV 

t = q k + S  
Solve z from Kz = t; 
xk+l = xk + akz; 
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Preconditioning Bi-CGSTAB method 

Give an initial guess xo, ro = b - Axo; 
Choose a vector io such that (ro, PO) # 0, e.g. i o  = ro; 
let PO = (PO, YO). PO = ro; 
do k = 0, 1, . . . until residual < tolerance 
Solve y from Ky = Pk;  

v = Ay 
uk = pd(p0, v); 
s = rk - akV 
Solve z from Kz = s; 
t = Az 

Tk+l = s - wkt 
wk = (s, t)/(t,  t )  

xk+l = xk + a# + wkz 

Pk+l = (rO, rk+l) 

b k  = (adwk) (Pk+l/Pk);  

pk+l rk+l + b&k - wkv); 

Preconditioning TFQMR method 

Given an initial guess xo, ro = b - Axo; 
Choose a vector io such that (ro, Po) # 0,  e.g. Po = ro; 
let p o  = (Po, Yo),  po = 90 = ro, do = 0, O0 = 0, T~ = wl = Ilroll; 
do k = 0, 1, . . . until residual < tolerance 

Solve v from Kv = y ;  
Y = APk 

ak = Pd(P0, v); 
uk = qk - akv 
s = qk + uk 
t = As 
Solve w from Kw = t; 
rk+l = rk - akw 

o m + 1  = J(IIrk+lIIIlrkll) i f m  = 2k f 1 
wm+l = IIrk+lII if m = 2k + 2 
8, = w m + l / T m - ,  

c, = i / ~ ( i  + ernem) 
T ,  = Z m - l e m C m  

d, = c i  + c ~ 8 ~ p , d , - l  
y , = q k i f m = 2 k +  1 
ym = Ukifm = 2 k +  2 
X, = x,- 1 + d, 
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p k + l  = (PO,  r k + l ) ;  

b k  = P k + l l P k ;  

q k + l  = rk+l  + b k U k  

P k + l  = q k + l  + b k ( b r c P k  + u k ) ;  

It can be seen that both CGS and Bi-CGSTAB produce only one iterate x,, per iteration, while 
TFQMR generates two iterates x,,, with indices m = 2k + 1 and 2k + 2 in the kth step of the interation. 

4. INITIAL AND BOUNDARY CONDITIONS 

A uniform flow field with uniformly distributed turbulence intensity is first assumed to start the 
computation. The initial conditions of turbulence intensity are set as 

where u,  is the freestream speed and L is the characteristic mixing length. 
The boundary conditions are set as follows. (1) The characteristic extrapolation technique is applied 

at the far-field ( q  = qmax) and outflow boundaries, while a zeroth-order extrapolation is used to specify 
the conditions at the symmetric boundary. (2) No-slip boundary conditions for velocities are adopted 
on the solid surface, which is assumed to be an adiabatic wall. (3) The density and pressure on the wall 
are set equal to the values at the node points next to the wall. (4) For the Reynolds stress (u!u!) and 
turbulent kinetic dissipation rate ( E )  calculations a zeroth-order extrapolation is used to specify the 
conditions at the outflow and symmetric boundaries, except that the value of a is set to zero at the 
symmetric boundary. The values of are set to zero at the solid wall. However, the value of E at the 
wall is finite and equal to v@k/axeaxe in Shima’s near-wall Reynolds stress model. 

It is noted that the computations are performed with the Reynolds stress model from the first time 
step and no ‘pre-run’ is necessary in the present study. However, other a ~ t h o r s ~ ~ , ~ ’  perform the 
computations with the algebraic turbulence model until an acceptably converged solution is obtained 
and then continue the computations with higher-order turbulence models for a certain number of time 
steps. 

‘;I 

5. RESULTS AND DISCUSSION 

This study investigates the improvement in the convergence behaviour of variants of the Bi-CG method 
when the Reynolds stress model is incorporated into the simulation of compressible separated flow 
fields. The following cases are chosen here to illustrate the scope of the study and its outcome: 
(1) transonic shock-induced separated flow over an axisymmetric ( M ,  = 0.875, 
Re,  = 1.36 x lo7 m-’); (2) supersonic separated flow over 2OoI4 ( M ,  = 2.79, Re,  = 

6.60 x lo7 m-’) and 24°14,15 (M,  = 2.85, Re, = 6-30 x 10’ m-I) compression comers; (3) 
supersonic base flow behind a missile-type a f te rb~dy’~ , ’~  (M,  = 2.45, Re, = 15.9 x lo7 m-I). The 
first and second examples have their focus on strong shock waveboundary layer interaction. The last 
case examines the base drag prediction which is very important in the aerodynamics of unpowered 
flight. In these cases comparisons with experimental data are also performed and the comparisons of 
convergence rate are based on the maximum possible Courant number according to the stability 
restriction. In the present computations only one iteration of solving (6) by the variants of the Bi-CG 
method is used for each time step, because only the approximated solution is required at each time step 
in the time-marching problem. The tolerance levels for the cases of bump, compression corner and 
supersonic base are about and low3 respectively. 
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5. I .  Transonic shock-induced separated flow over axisymmetric bump 

The first test case is the axisymmetric, transonic, shock wavelboundary layer experiment of Bachalo 
and A schematic diagram of the axisymmetric bump is shown in Figure 1 along with the 
grid system. The circular arc bump has a thickness of 1.91 cm and a chord length C of 20.32 cm and 
is affixed to a thin-walled cylinder of outer diameter 15.2 cm. Its leading edge is joined to the cylinder 
by a smooth circular arc of radius 18.3 cm which is tangent to the cylinder at 3.33 cm upstream and to 
the bump at 2.05 cm downstream of the intersection of the bump arc with the cylinder. Here a strong 
shock impinging on the bump induces a separated flow region similar to that developed on an aerofoil. 
In previous studies many computations based on various turbulence closure models have been 
performed, e.g. algebraic turbulence  model^,^^.^' a higher-order turbulence model of the k--E two- 
equation model" as well as the algebraic stress model.28 However, further improved results are desired 
for the predictions of shock location and flowfields around the separation region due to the shockl 
boundary layer interaction when k--E or ASM turbulence models are employed. 

The grid system used in the numerical computations is a 150 x 71 H-type grid with 60 points 
behind its trailing edge and clustering near the shock location and at the wall to ensure high resolution 
of the shock region and viscous sublayer, which corresponds to a minimum y+ of 0.5. The boundaries 
of the computational domain are extended 4.5C in the normal direction and from -4C to 4C in the 
flow direction. 

Figure 2 shows the computed and measured pressure distributions along the bump surface. The 
characteristic features of shock position and pressure level in the shock wavelboundary layer 
interaction region are much better predicted by the RSM model than by the k--E two-equation model." 
It is also noted that the pressure distribution obtained by the AF method is slightly different from that 
yielded by the three variants of the Bi-CG method in the recirculation region. This difference could be 
caused by the factorization error of the AF method, which introduces a higher level of convergence 
criteria in the turbulent transport equations. Figure 3 shows the Mach number contours obtained by the 
Bi-CGSTAB and AF methods. Because the computational results are the same among the three 

Figure 1. A 150 x 7 1 hyperbolic H-type grid (bump) 
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variants of the Bi-CG method, only the contour of the Bi-CGSTAB method is plotted for comparison 
with that of the AF method. The Bi-CGSTAB algorithm in particular gives a somewhat higher 
resolution for the prediction of shock wavehoundary layer interaction than the AF algorithm does. 

The convergence histories of the L2 and maximum energy residuals by various implicit solvers are 
plotted in Figure 4. The L2 residual defined as the square root of Ey [(AVAp/At); + (AY A p /  
At): + ( A  V ApvlAt)' + ( A  V AEt/At)?]lN, displays the overall convergence properties of the flow fields, 
where AV is the differential volume of the ith computational cell and N is the total number of 
computational cells. The maximum energy residual indicates the local convergence behaviour of the 
flowfields and is defined as the maximum of [(q" -,!?:)/A& where i is the index of the 
computational cell, Et is the total energy and n is the iteration time. The time step by the AF method is 
0.6 and the relaxation factors for and E are 0.15 during the iteration steps. However, the maximum 
possible time steps by the three variants of the Bi-CG method, i.e. CGS, Bi-CGSTAB and TFQMR, are 
3.0, 3.3 and 3.3 respectively and no relaxation is necessary for the turbulent transport equations of & 
and E .  The L2 residual can only be reduced in an oscillatory manner to about lop8 after 12,000 
iteration steps by the AF method, but fewer than 4000 iteration steps are needed by the three variants of 
the Bi-CG method to achieve the same performance. The irregular and oscillatory convergence 
characteristics of these schemes could be caused by the strongly non-linear properties of the turbulence 
model. The CPU times of each iteration are 3.74,5-75,5*71 and 6.97 s for the AF, CGS, Bi-CGSTAB 
and TFQMR methods respectively when the computations are performed on an HP-9000/735 scalar 
workstation. The computing efficiency, defined as the CPU time per iteration per grid point, and 
related parameters for these four methods are summarized in Table I. Generally speaking, the use of the 
Bi-CGSTAB method leads to a speed-up of the CPU time by a factor of about 2.4 as compared with 
the use of the AF method to achieve the same convergence criterion. Among the three variant Bi-CG 
methods, TFQMR and Bi-CGSTAB are slightly better than CGS in terms of the convergence rate, but 
TFQMR consumes more CPU time per iteration than the other two methods. 
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Figure 4. Convergence histories of L2 and maximum energy residuals (bump) 
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Table I. Computing efficiency (CPU seconds per iteration per grid point on an HP-9000/735 workstation) and 
related parameters for various solvers 

VARIANTS OF BI-CONJUGATE GRADIENT METHOD 

~~ 

91-CGSTAB TFQMR AF CGS 

Computing efficiency 3.51 x 1 0 - ~  5.40 x 5.36 x 1 0 - ~  6.54 x 1 0 - ~  

Bump CPU seconds* 
Max. time step size 
Iteration no.* 

Max. time step size 
Iteration no.* 

Max. time step size 
Iteration no.* 

20" ramp CPU seconds* 

Base CPU seconds* 

44880 
0.6 
12000 
67800 
0.2 
20000 
9 1200 
0.2 
20000 

20125 
3.0 
3500 
15630 
1.6 
3000 
22624 
1.5 
3200 

18843 
3.3 
3300 
15540 
1.8 
3000 
14060 
1.8 
2000 

2300 
3.3 
3300 
18960 
1.8 
3000 
23996 
2.4 
2800 

* The numbers are for the L2 residual down to three orders lower. 

5.2. Supersonic flow over compression corner 

This problem shows that an oblique shock impinging on the boundary layer ahead of the comer of a 
20" (M,  = 2.79) or 24" (M, = 2.85) ramp'4.'' induces a massive separated flow region owing to the 
upstream influence. The primary objective is to demonstrate the performance of variants of the Bi-CG 
method for stronger, supersonic shock wave/boundary layer interactions of various extents, so a 
comparison of the 20" and 24" ramps is made here. 

The 136 x 7 1 H-type grid systems used in the computation of these two cases are shown in Figures 
5 and 6. The grid systems are clustered near the comer and at the wall surface, corresponding to a 
minimum y" of 0.7 to resolve the steep variation in flow fields across the viscous layer where viscous- 
inviscid interaction occurs. The upper boundary is placed about 9h0 away from the wall and the outer 
boundary is lcoated at 860 downstream of the comer, where do is the measured boundary layer 
thickness. The measured inflow velocity profiles are set at positions X = - 1 *660 and -2. 17h0 for the 
20" and 24" ramps respectively. 

Figure 7 shows a comparison of surface pressure distributions along the 20" ramp. It is noted that the 
Reynolds stress turbulence model solved by the variants of the Bi-CG method can well predict the 
initial pressure rise but overestimates the extent of the upstream influence indicated by the plateau in 
the experimental pressure distribution. However, the AF method reaches a different solution owing to 
the factorization error in this scheme. The surface pressure distribution over the 24" ramp is computed 
and compared with data by Horstman et al. l4 and Dolling and Murphy" and the prediction associated 
with the Jones-Launder two-equation model by Coakley and H ~ a n g ~ ~  in Figure 8. Numerous 
computations using two-equation turbulence models have also been made for this case and fiuther 
improvements in predictions of the upstream influence, the wall pressure rise through separation and 
the pressure under the separated shear layer are desired.29 However, the pressure distribution predicted 
by the present Reynolds stress model follows the data of Dolling and Murphy and the trend is similar 
to the results in Reference 30. The agreement between computation and experiment shows the 
improvement achieved with the Reynolds stress model. The difference between the AF method and the 
variant Bi-CG methods could be due to the factorization error in the AF scheme, which prevents the 
residual level from converging to satisfactory values. Owing to the higher residual level of the AF 
method, the solutions obtained by this method may not be good enough when it is applied to simulate 
complex flow fields using higher-order turbulence models. 
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Figure 5.  A 136 x 71 hyperbolic H-type grid (20" ramp) 

The convergence histories of the L2 and maximum energy residuals for the 20" ramp by the AF, 
CGS, TFQMR and Bi-CGSTAB methods are compared in Figure 9. the L2 and maximum energy 
residuals are reduced by six orders of magnitude after 38,000 iteration steps when the AF method is 
employed, but the L2 and maximum energy residuals can be reduced to the same criterion by the three 
variants of the Bi-CG method in less than 5500 iteration steps. The maximum possible time steps by 
the AF, CGS, Bi-CGSTAB and TFQMR methods are 0-2, 1.6, 1-8 and 1.8 respectively and an 
underrelaxation factor of 0.15 is needed when the AF method is employed. Using the variants of the 
Bi-CG method, a flattened convergence history is observed during the first 3000 iteration steps to form 
the oblique shock and then the L2 and maximum energy residuals converge smoothly and fast to lop9 
and respectively during the 4800th-5500th iteration steps. When the computations are performed 
on an HP-9000/735 scalar workstation, the CPU times needed for the AF, CGS, TFQMR and Bi- 
CGSTAB methods are 3.39, 5.2 1, 6.32 and 5- 18 s respectively for each time step. This means that the 
use of the Bi-CGSATB method could speed up the CPU time by a factor of 4.4 as compared with the 
use of the AF method to achieve the same convergence criterion. Figure 10 compares the convergence 
histories of the L2 and maximum energy residuals for the 24" ramp. In general, Figures 9 and 10 show 
similar convergence characteristics. However, the allowable maximum time step of the AF method for 
the 24" ramp (At = 0.25) is larger than for the 20" ramp (At = 0.2), so that fewer iteration time steps 
are needed to get a converged result for an oblique shock. Because the extent of separation for the 24" 
ramp is greater than for the 20" ramp, this increases the convective effects and allows a larger time step 
for the 24" ramp. The CPU time can be speeded up by a factor of 4.1 by the use of the Bi-CGSTAB 
method as compared with the AF method to achieve the same convergence criterion. 
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Figure 6 .  A 136 x 71 hyperbolic H-type grid (24" ramp) 
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Figure 7. Surface pressure distributions for various solvers (20' ramp) 

Figure 1 1 shows the convergence histories of the Reynolds stress components u" and solved by 
the AF and Bi-CGSTAB methods for the 20" ramp. Although the L2 residual of the AF and Bi- 
CGSTAB methods could reduce to the same convergence criterion (Figure 9), the turbulent transport 
equations are converged to different residual levels and this influences the surface pressure distri- 
butions of the two solvers as shown in Figure 7. Owing to the factorization error in the AF scheme, the 
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Figure 9. Convergence histories of Lz and maximum energy residuals (20" ramp) 

maximum residual levels of the u" and v" transport equations by the AF scheme are only reduced to 
10-4-10-5; however, the Bi-CGSTAB method reduces the residual levels to 10-7-10-8 and achieves 
a much better convergence criterion. Figure 12 shows the convergence histories of the Reynolds stress 
components and a solved by the AF and Bi-CGSTAB methods for the same case. The Bi- 
CGSTAB method can reduce the residual level of w'w' to a better convergence criterion than the AF 

- 
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Figure 12. Convergence histories of zo'd and u'd residuals (20" ramp) 

scheme; however, the residual levels of u" by both the AF and Bi-CGSTAB methods reach the same 
convergence criterion. 

It is concluded that the factorization error in the AF scheme not only limits the allowable time step, 
but also the residual levels in the turbulent normal stress transport equations cannot be reduced to low 
enough values. The unsatisfactory convergence characteristics of the AF method may induce some 
error when it is applied to simulate complex flow fields using higher-order turbulence models. 

5.3. Supersonic base flow behind missile-type afterbody 

Base pressure is one of the most important and complicated problems in fluid dynamics and makes a 
major contribution to the drag of missiles in power-off flight. However, very few quantitative data 
existed until recently, when Herrin and Dutton published a set of detailed experimental data for the 
near-wake flow field in axisymmetric supersonic flow.I7 In the present computation the grid system 
(Figure 13) is a 118 x 1 1  1 H-type grid with 55 points on the base surface and clustering in the 
reversed flow region and shear layer to resolve the steep flow field variation. The outer boundaries in 
the streamwise and radial directions are 10 calibres away from the base surface and 5.5 calibres away 
from the axisymmetric axis respectively. Also, the measured inflow velocity profile is set at the corner. 

Figure 14 compares the calculated base pressure distributions with the experimental data set of 
Herrin and Duttan and includes a sketch of the mean flow field structure. This figure shows that the 
base pressure distributions predicted by the three variant Bi-CG methods and AF method with the 
Reynolds stress turbulence model are in fairly good agreement with experiment. The conventional k-& 
two-equation turbulence model gives the largest variation in base pressure di~tribution.~' The base drag 
coefficients C,, in the present computation by the Reynolds stress and k-& models are -0.1082 and 
-0.1378 respectively and the result for the RSM is much closer to the measured C,, of -0.102. This 
indicates the successful use of the Reynolds stress model for base flow prediction. Figure 15 shows the 
Mach number contours of measurement and numerical predictions. At the corner the expansion fan can 
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Figure 13. A 1 1  8 x 1 1  1 hyperbolic H-type grid (supersonic base) 

Mach=2.46 

be recognized by the increasing Mach number, followed by a gradually recompression in the outer flow 
with decreasing Mach number, as can be seen in the upper right corner of the figures. Comparison of 
the plots indicates that the factorization error in the AF method somewhat influences the reverse 
flow region as compared with the Bi-CGSTAB method. In the reverse flow region near the base 
surface the AF method gives a slightly uniform distribution of Mach number away from the 
asixymmetric axis. 

Figure 16 presents the convergence histories of the L2 and maximum energy residuals by the AF, 
CGS, TFQMR and Bi-CGSTAB methods. In the problem of supersonic base flow the L2 and 



250 C C C H U A N G A N D  C.C.CH1ENG 

Mach N u m b e r  C o n t o u  
Bi-CGSTAB. RSM 

r,9y Mach Number C o n t o u r  / //A 

Figure 15. Mach number contours for various solvers (supersonic base) 

maximum energy residuals by the AF method are only reduced by about 4-5 and 3 orders of magnitude 
respectively after 30,000 iteration steps. However, the L2 and maximum energy residuals can be 
reduced about 5 and 4 orders of magnitude respectively in only 4000-6000 iteration steps using the 
three variants of the Bi-CG method. The maximum possible time steps by the AF, CGS, TFQMR and 
Bi-CGSTAB methods are 0.2, 1.5, 1.8 and 2.4 respectively and it is noted that an underrelaxation 
factor of 0.20 is needed when the AF method is employed. Among the variant Bi-CG methods, the Bi- 
CGSTAB method has demonstrated much more stable properties and accepts a larger time step than 
the CGS and TFQMR methods in the simulation of complex base flow fields. When the computations 
are performed on an HP-9000/735 scalar workstation, the CPU times needed for the AF, CGS, 
TFQMR and Bi-CGSTAB methods are 4.56, 7.07, 8-57 and 7.03 respectively for each time step. This 
means that the use of the Bi-CGSTAB method could speed up the CPU time by a factor of 6.5 as 
compared with the AF method to achieve the same convergence criterion. 

6. CONCLUSIONS 

Three variants of the preconditioned bi-conjugate gradient method have been successhlly 
implemented in compressible Navier-Stokes solvers with the Reynolds stress turbulence model and 
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Figure 16. Convergence histories of 152 and maximum energy residuals (supersonic base) 

their efficiencies in the simulation of transonic and supersonic separated flows have been 
demonstrated. Several conclusions regarding the present study can be made as follows. 

(1) Among the three variants of the Bi-CG method, the Bi-CGSTAB method is the most stable one 
and accepts a larger time step than the CGS and TFQMR methods in the simulation of complex 
base flow fields. 

(2) The factorization error in the AF scheme not only limits the allowable time step but also induces 
higher levels of residuals in the turbulent transport equations. An error may be induced in solutions 
owing to the unsatisfactory convergence criterion of the AF method when it is applied to simulate 
complex flow fields using higher-order turbulence models. Therefore the variants of the Bi-CG 
method are more effective than the AF method for more complex flow fields. 

(3) The numerical implementation of variants of the Bi-CG method makes the computation of 
complex flow fields with the Reynolds stress turbulence model practical and feasible regarding the 
CPU requirements and desired accuracy. 

(4) The Reynolds stress model provides much better prediction and agreement with experimental data 
than the k-E two-equation model for simulations of the complex interactions between shocks and 
boundary layers. 
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APPENDIX: NOMENCLATURE 

dimensionless base drag coefficient, c p b  = 2(Pb - P ~ ) / ~ M ~ P ,  
flux vectors in transformed co-ordinates 5 and q 
viscous flux vectors in transformed co-ordinates 
source terms associated with axisymmetric co-ordinates 
Jacobian 
turbulent kinetic energy 
Mach number 
production rate of turbulent kinetic energy 
vector of dependent variables 
Reynolds number (U,D/v) 
turbulent Reynolds number (Re,pJk y n / p J M , )  
time 
axial and radial velocity components 
turbulent stresses 
source terms of turbulent transport equations 
axial and radial co-ordinates 
dimensionless normal distance from solid wall 

Greek letters 

& turbulent dissipation rate 
t> v transformed co-ordinates 
P density 

Subscripts 

1 
t 

00 

V 

freestream value 
laminar 
turbulent 
viscous 
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